A new pedestrian detection method based on combined HOG and LSS features
نویسندگان
چکیده
Pedestrian detection is a critical issue in computer vision, with several feature descriptors can be adopted. Since the ability of various kinds of feature descriptor is different in pedestrian detection and there is no basis in feature selection, we analyze the commonly used features in theory and compare them in experiments. It is desired to find a new feature with the strongest description ability from their pair-wise combinations. In experiments, INRIA database and Daimler database are adopted as the training and testing set. By theoretic analysis, we find the HOG–LSS combined feature have more comprehensive description ability. At first, Adaboost is regarded as classifier and the experimental results show that the description ability of the new combination features is improved on the basis of the single feature and HOG–LSS combined feature has the strongest description ability. For further verifying this conclusion, SVM classifier is used in the experiment. The detection performance is evaluated by miss rate, the false positives per window, and the false positives per image. The results of these indicators further prove that description ability of HOG–LSS feature is better than other combination of these
منابع مشابه
Feature Selection and Pedestrian Detection Based on Sparse Representation
Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental resul...
متن کاملPerformance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملPedestrian Detection Algorithm Based on Local Color Parallel Similarity Features
HOG Feature is the mainstream feature applied in the field of pedestrian detection .HOG combined with CSS has good effects on pedestrian detection. Because of the large amount calculation of HOG and CSS, HOG and CSS has poor real-time performance, we propose LCSSF (Local Color Self Similarity Feature) avoiding calculating the global color similarity distribution of CSS. The tested results of th...
متن کاملBOG: An extension of HOG by interpreting it as bag of features
Histogram of orientated gradient (HOG) is widely used as a local feature descriptor in bag of features (BOF) method, whereas, few studies are conducted to discover the relationship between them. In this paper, we exploit this relationship and reveal that the construction method of descriptor in blocks in HOG can be treated as a variant of BOF method. Based on this interpretation, we propose a n...
متن کاملSelection of Histograms of Oriented Gradients Features for Pedestrian Detection
Histograms of Oriented Gradients (HOG) is one of the wellknown features for object recognition. HOG features are calculated by taking orientation histograms of edge intensity in a local region. N.Dalal et al. proposed an object detection algorithm in which HOG features were extracted from all locations of a dense grid on a image region and the combined features are classified by using linear Su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 151 شماره
صفحات -
تاریخ انتشار 2015